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Abstract

Acoustical backscattering from randomly rough infinitely long elastic cylinders sur-
rounded by a fluid medium is examined. The cylinder radius is allowed to vary along
its lengthwise axis creating one-dimensional rotationally symmetric roughness. Us-
ing recently published rough cylinder formulations [T.K. Stanton, J. Acoust. Soc.
Am., 92, 1641-1664 (1992) and T.K. Stanton and D. Chu, J. Acoust. Soc. Am., 92,
1665-1678 (1992)], explicit expressions are derived for the backscattered field for
a laboratory pulse-echo environment: spherically spreading directional source and
receiver with arbitrary beam patterns. Efficient numerical integration algorithms
are developed to solve for the backscattered field from a specified surface profile.
Experimental measurements from dense elastic (stainless steel) cylinders immersed
in water are presented to quantitatively illustrate the effects of small scale surface
roughness (0,/a = 0.0131 where o, is the surface rms roughness and a is the mean
cylinder radius) for 4.5 < ka < 70 where k is the acoustic wavenumber. The actual
target surface profile is well described and used as an input in the numerical simula-
tions. Agreement is found between measurements and simulation predictions both
in the mean field levels and the field fluctuations over a wide range of frequencies.
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Chapter 1

Introduction

Fundamental knowledge of basic scattering processes has long provided the foun-
dation for a variety of remote sensing systems: sonars (or “echo sounders”) and
bioacoustic ultrasonic medical imagers in the acoustic realm, radar and optical lasar
systems in the electromagnetic realm. Accurate understanding of the interaction
between an incident field and a target of interest is imperative in order to extract
any information from the scattered field of an unknown target or, conversely, to
accurately predict the scattered field from a known object. Historically, scattering
models have been based on analytic solutions for simple mathematical shapes such
as spheres, infinitely long cylinders, spheroids, or planar interfaces. But as remote
sensing systems have improved and moved from detection and localization to iden-
tification and imaging, these simple scattering models fail to provide an accurate
picture of scattering from complex naturally occurring objects.

Many investigators have extended the basic models to account for variations in
material composition, deformed shapes, and internally loaded structures. However,
the perfectly smooth surface boundary condition remains an underlying assumption
in the vast majority of this work. Previous research in rough surface scattering has
almost exclusively focused on planar boundaries. While two-dimensional rough

surface theories have proven crucial for accurc:ie understanding of scattering from




the ocean surface [1,2], sea ice (3], and the ocean bottom [2,4], little work has
focused on the problem of rough three-dimensional bodies. The research conducted
has been limited to cases such as simple deformations of spheres [5,6], idealized
cylinders (impenetrable bodies insonified by uniform plane waves) (7,8,9,10], or
numerical approaches to more complex shapes [11,12].

In addition to the small amount of theoretical attention, few controlled experi-
ments have been conducted ‘o investigate rough surface scattering from bodies of
curvature. The published experimental data are typically confined to electromag-
netic scattering [13] with only broad similarities to acoustic scattering. Additionaily,
the surface profiles in these experiments are nct known a priors and only estimated,
in part, from the scattered field data.

In a series of papers [14,15,16], Stanton recently developed an approximate model
for scattering from deformed elongated bodies. Although the original papers only
explicitly examined gross deformations about the major axis, such as a curved cylin-
der, the formulation itself is quite general and has been used to model rotationally
symmetric or one-dimensional roughness as a radius deformation down the major
axis of the body [17,18]. This method can easily describe a variety of shapes and
realistic elastic bodies as well as idealized rigid objects.

This thesis will extend Stanton and Chu’s rough cylinder formulation [17,18] that
involves plane wave incident fields and point receivers to one with realistic acous-
tic transducers. Specifically, we will incorporate a spherically spreading directional
source and receiver with arbitrary beam patterns into Stanton's rough body theory
and derive analytic and numerical results for an infinitely long elastic cylinder with
small scale roughness. Chapter 2 reviews the normal mode and Sommerfeld-Watson
transform (SWT) solutions for the ideal infinitely long elastic cylinder. Stanton’s
deformed cylinder formulation is presented and extended to directional spherically
spreading incident fields. Chapter 3 develops efficient numerical algorithms to solve

the rough cylinder formulations and Monte Carlo simulations are presented pre-
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dicting the statistics for the rough cylinder scattered field. Chapter 4 prescnts data
from a number of backscattering experiments using an elastic cylinder target with
a known random profile. The experiments measured the backscattered field from a
number of statistically independent realizations of the random profile. Since the tar-
get profile is specified a priori and well characterized, analytic predictions from the
numerical models are compared directly with the experimentali results. Chapters 5

and 6 discuss and summarize the results and present the conclusions.
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Chapter 2

Theoretical Development

2.1 General solutions

2.1.1 Basic equations

The general equations for sound propagation in a fluid were first derived in a linear
form by Rayleigh [19] over cne hundred years ago but still provide the foundation
for all work in acoustics. The derivation is based on three basic equations governing
the dynamics of motion in an inviscid fluid, here following the form from Morse and
Ingard [20] and Skudrzyk [21]. First, the adiabatic equation of state relating the

pressure, p, and density, p, of the medium is linearized
p = c*p + constant (2.1)

where c is the acoustic sound speed in the medium. Next, linearizing the conserva-

tion of momentum for a fluid parcel yields Euler’s equation

where u; is the particle velocity in the z; direction and p is now the mean density

of the medium. Finally, the continuity equation

du; -—10p
3z; pct ot (2.3)




is a linearized equation for the conservation of mass. Taking a spatial derivative
of Eq. (2.2), a time derivative of Eq. (2.3), and subtracting the results yields the

standard homogeneous acoustic wave equation
Véip—=—=0. (2.4)

If we consider motions with a harmonic time dependence, e~*“!, where w(= 27 f) is
the angular frequency; then Eq. (2.2) becomes in, vector form,

u= :);Vp | (2.5)
Using the relation ¢ = w/k where k(= 27/)) is the acoustic wavenumber and A is
the acoustic wavelength, we get the standard relation between the particle velocity
and the pressure

u= ;:—k—pr (26)

Rayleigh [19] and Morse and Ingard [20] derive the scattered field from a infinite
circular cylinder by solving the wave equation in a cylindrical coordinate system and
matching boundary conditions. Using the cylindrical coordinates r, ¢, z and an

e~*“* time dependence, Eq. (2.4) becomes

3p 16p 13% o ,
E;+;3;+rza¢z+—+kp 0. (2.7)

Assuming a separable solution of the form p = R(r)®(¢)Z(z)e~***, Eq. (2.7) reduces

to the coupled equations

2
'; ‘f +kiZ=0 (2.8)
d*®
Frm 29 =0 (2.9)
d?R 1dR m?
F+;E—+(k,’—7)}2=0 (2.10)

where k? +k? = k?

k., k., m = constants.

16




The general solution for Eq. (2.8) is
Z = Ae'*s* 4 Be~iks (2.11)
and for Eq. (2.9)
® = Acos(m¢) or Asin(mg) (2.12)

where m must be an integer for the solution to be periodic in 27 as required for
axially symmetric problems. The radial equation, Eq. (2.10), is a form of Bessel’s

equation [22] and has two sets of general solutions

aJm(k,r) + bNgy(k,r)
R={ or (2.13)
aHW(k,r) + bH (k,r)
where Jp,(k,r) is the Bessel function of the first kind of order m, Nn(k,r) is the
Bessel function of the second kind (Neumann function), H})(k,r) is the Hankel
function of the first kind (Bessel function of the third kind) of order m, and H{®) (k,r)

is the Hankel function of the second kind. These solutions are related through the

identities .
HW (k,r) = Jm(k,r) + iNom(k,7) (2.14)
H®(k,r) = Jp(k,r) — iNp (K, 7). (2.15)

Since N,,(k,r) becomes infinite as its argument goes to zero, the solution for any
domain containing the origin must be a function of J,(k,r) only. Finally, using the

asymptotic expansion for the Hankel functions at large argument (23]

HY)( )km\/ (—i)™ efl=-7/4) (2.16)

H®)(z) — 1r—z (—i)™ e=il==/4) (2.17)

we see that the H{})(k,r) solution corresponds to a traveling cylindrical wave prop-
agating outward away from the origin r = 0 while the H{?)(k,r) is a cylindrical wave

traveling inward toward the origin.
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In order to impose the boundary conditions, the total acoustic pressure field is

split into three components

Ptotal = Pinc + Pscat + Pint (2.18)

where pi,. is the incident pressure, p,..: is the scattered pressure, and piy is the
internal pressure in the scatterer, in this case, an infinitely long circular cylinder of
radius a. Likewise, each of t..ese pressure fields has a unique particle velocity u;,,
Ugcat, aNnd Wi related through Eq. (2.6). The boundary conditions for this problem

require that the pressure be continuous at the cylinder boundary r = a

Pinc(a) + Pacat(@) = pint(a) (2.19)

and the radial component of the particle velocity, u,, also be continuous at r = a
u, . (a) + u,,...(a) = u,_ (a). (2.20)

By expanding the incident field in terms of the Bessel functions and picking the ap-
propriate general from for the internal and scattered fields, Rayleigh [19] and Morse
and Ingard [20] solve for the scattered field from an infinitely long circular cylinder
by matching the fields at the boundary using Egs. (2.19) and (2.20). However, their
solutions are limited to either fluid body cylinders where the assumptions in Egs.
(2.1), (2.2), and (2.3) are valid or for the perfectly rigid cylinder case where the

internal particle velocity is identically zero and Eq. (2.20) becomes

tr, (@) + ¥, (a) = 0. (2.21)

2.1.2 Exact modal series solution for undeformed infinitely

long elastic cylinder

The more realistic problem of scattering from an elastic cylinder is complicated by

the fact that elastic bodies support shear as well as compressional waves. Faran
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[24] extended the solution method in Section 2.1.1 by deriving the internal particle
displacements from the scalar and vector potentials for small motions in an isotropic
elastic solid body. Love [25] showed the equation of motion for a solid elastic medium

may be written

9*d
at?
where ) and u are the Lamé elastic constants, p, is the density of the elastic medium,

(A+2u)VA — uVx(2w) = py (2.22)

d is the particle dispacement (Love and Faran use u),

A=V.d (2.23)
and
2w = Vxd. (2.24)
Taking the divergence of Eq. (2.22)
VA =y (2.25)
and the curl
2 _h a’(Zw)
Vi(2w) = 2o (2.26)

define a compressional wave velocity

o=/ +2m) /o (2.27)
and a shear wave velocity

¢, = \/u/pr. (2.28)

In order to solve Eq. (2.22), Faran assumes the displacement potential can be ex-

pressed as a sum of a scalar and vector component
d=-V¥+VxA (2.29)

where V-A = 0. Thus A = V-d = —V?V¥ and 2w = Vxd = —V?A and Egs. (2.25)
and (2.26) become
VW = ——— (2.30)




Receiver

Incident
Plane Wave

Figure 2-1: General scattering geometry for an infinitely long cylinder.

and
_ lB’A
T

respectively. From this, one can see that the scalar potential ¥ is associated with

ViA (2.31)

the compressional waves in the elastic body and the vector potential A with the
shear waves.

For an infinitely long elastic cylinder whose axis is aligned with the z axis and
normally incident plane waves traveling in the positive z direction (Fig. 2-1), the
solution should be independent of z and symmetric about ¢ = 0. Since the internal
displacements must be finite at r = 0 the solution of Eq. (2.30) can be written from
Egs. (2.12) and (2.13)

¥ = i amJ (k1) cosme (2.32)

m=0
where k; = w/c;; the time dependence e~*“* is implied and will be suppressed for the
remainder of this work. We have changed Faran’s e“! convention to e~*“* resulting
in a formulation that is the complex conjugate of his original equations. Since d
should be independent of z, Eq. (2.29) shows that the vecto: poiential A should

have no r or ¢ component. Also the vector potential must be anti-symmetric about
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¢ = 0 in order that the radial displacement be symmetric about ¢ = 0, thus the
solution of Eq. (2.31) can be written in the form
o0
A =) bpJm(ksr)sinmé 2 (2.33)
m=0

where k, = w/¢,. Now from Egs. (2.29), (2.32), and(2.33)

d, = Z ‘TJm(kz") - a,,.—J,,,(k;r)] cos mg, (2.34)
m=0
dy=3Y ["‘:"‘ Tm(krr) — b,,,-a%Jm(lc,r)] sin m¢ (2.35)
and using Eq. (2.30)
2
=-Vi¥ = czl ?9:? = kv =k} Z amJIm(kyr) cosme. (2.36)
{4 m=0

The incident plane wave field of amplitude P, can be expanded as a series of

cylindrical waves [21]
Pinc = P,e'*% = P,e'tr<*¢ = p, Z €m 1" Im(k7) cos(me) (2.37)

m=0

where the Neumann factor is ¢ = 1 and ¢, = 2 form = 1,2,3,.. .,.a.nd k is the
wavenumber in the fluid. The incident field is expanded only in J,(kr) since it
must be well behaved at the origin. The scattered field must also be symmetric
about ¢ = 0 and independent of z, therefore from Eqs. (2.12) and (2.13) is of the

form

Pacat = i Cm HY (kr) cos(m¢) (2.38)

m=0
where the coefficients C,, are undetermined. The function H{!)(kr) is chosen in Eq.
(2.38) since the scattered field is only defined for r > a and should be traveling
outward, away from the cylinder.

The boundary conditions (Egs. 2.19 and 2.20) discussed for the fluid body cylin-

der case must be modified for scattering from an elastic body. First, for consistency
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with Faran, we consider particle displacements rather than particle velocities and

Eq. (2.6) becomes
-1
d= mz—pr (239)
The radial components of particle displacement associated with the incident and

scattered fields are

drpe = pkc2 Z €m 1" J,, (k1) cos(m¢) (2.40)

and

2 Cp HY (k) cos(m¢) . (2.41)

Tecat — k cz

respectively, where the prime mdncates differentiation with respect to the function’s
argument. Faran [24] lists the boundary conditions appropriate for an elastic scat-

terer as :

1. The pressure in the fluid must be equal to the normal component of stress in

the solid at the interface.

2. The normal component of displacement in the fluid must equal the normal

component of displacement in the solid at the interface.

3. The tangential components of shear stress in the solid must vanish at the

surface.

For our cylindrical case, these become

ph.’(a) + plcat(a) = "[rrllr:a, (242)
dr, (a) + dr,...(a) = d(a), (2.43)

and
[réllr=a = [r2]|;=a =0 (2.44)

where the stress components are given by [24,25]

ad
or

[rr] =

(2.45)
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Faran solves Eqs. (2.42) - (2.44) for Cp, using Eqgs. (2.34) - (2.38), (2.40), (2.41),
(2.45) - (2.47) and shows

and

[rz] = p (2.47)

Cm = — P, € 8™ sinyg,, == (2.48)

where

tan 9, = [tan é,(z)] [tan @, + tan a,(z)] / [tan &, + tan Bn(z)],
tan bp(z) = —Jpn () /Nm(2),
tan ap,(z) = —zJ),(2)/Im(z),
tan fm(2) = —zN,,(z)/Nm(2),

tan &, (z) = (—p/p1) tan ¢m(z1,0),

tan¢m(z;,0) =

-2 ({tan an(an/ ltan am(z2) + 1] - m?/ [sam an(e) + m? - 2)

+ ([ta,n am(z1) + m? - é] / [tan am(z1) + 1]

— m’? [tan am(z3) + 1) / [tan am(zz) + m? — %3})

and

z = ka,
z) = kia,
Iz = kza.
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From Eq. (2.38) the exact modal solution for the scattering from an infinitely long

elastic cylinder is then

Prcss = =P, 3" em i™*Y sin g, e HO) (kr) cos(mg) (2.49)

m=0

and using the asymptotic expansion for the Hankel function, Eq. (2.16), the farfield
limit of the scattered pressure is

; 2 $(kr—x - : -
Pacat ooy — zP.,V vl (r=2/4) 3™ €y 5in 1) €™ cos(m¢) (2.50)

m=0

2.1.3 Simplified ray solution for infinitely long elastic cylin-

der

While the normal mode or partial wave series solution derived in Section 2.1.2 is
a compact representation of the scattering field, it is computational intensive and
offers little physical insight into the actual scattering processes. Recently, much
attention has been given to an equivalent ray or Sommerfeld-Watson transform
(SWT) formulation for convex elastic bodies [26,27,28,29,30,31,32,33,34,35]. This
approach has the advantage of “decomposing™ the scattered process into a simple
superposition of physically observable wave types. The transform technique involves
rewriting the partial wave series solution Eq. (2.49) as a sum of two contour inte-
grals in the complex plane. The poles of the first integrand are found and identified
with unique wave types (i.e. Rayleigh wave, Franz wave, etc.). The contour is then
deformed around these poles and the integral evaluated using Cauchy’s Residue
Theorem [26,28,29,30]. The second integral is expanded as a Debye series and eval-
uated using the saddle point method giving the specular reflection and transmitted
wave (including possible mode conversions) contributions [27]. The details of the
SWT method will not be reproduced here, but a general outline of the results will
aid our understanding of the observed scattered field.

Typically, the scattered field (fswr) is interpreted in terms of an initial specu-

larly reflected ray (f,), internally transmitted and refracted bulk rays (fi,,), Rayleigh
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(fr) and Whispering Gallery (fwg) surface elastic waves, and Franz creeping waves

(fr)
fswrZ i+ fwt+ o+ D S (2.51)

I=WG.,F
The specular ray is energy reflecting directly off the front interface of the cylin-

der. For the limit ka > 1, it can be written in a simple approximate form [17,32]
fo = Re~i%ka (2.52)

where R is the plane-wave/plane-interface Rayleigh reflection coefficient

¢ — pc
R=P11 P.
pic + pc

(2.53)
The phase shift accounts for the shortened acoustic ray path relative to a reference
ray traveling to the cylinder axis and back (Fig. 2-2).

The Rayleigh and Whispering Gallery surface elastic waves represent energy
coupling into the cylinder and circumnavigating the diameter while reradiating
back into the fluid. Rayleigh wave speeds, cg, depend on the locations of poles (and
hence the elastic material properties) in the SWT solution but ¢g/c, = 0.91 + 6%
provides a first order approximation [35]. These surface waves travel very fast
with little attenuation and can circle the cylinder many times before decaying.
Figure 2-2 illustrates the path of the first, m = 0, Rayleigh wave. Higher order
waves simply represent multiple passes around the cylinder. The angle at which
energy couples between the fluid and elastic is governed by well known trace velocity
principles. Coupling occurs when the Rayleigh wave speed in the elastic cp matches
the component of the incident wave phase velocity along the cylinder surface ¢/ sin 8

where @ is the local angle of incidence. Therefore, the Rayleigh “launch” angle is
0r = arcsin(c/cg). (2.54)
The phase shift for the m = 0 surface wave is
nr = ka[(c/cr)(27 — 205) — 2 cos O] (2.55)
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Figure 2-2: “Ray” diagram implied by Sommerfeld-Watson transformation showing
the specular, m = 0 Rayleigh and Franz wave contributions to backscattering from
elastic cylinders.

where the first term is the phase for the acoustic path in the cylinder and the second
is the phase for the shortened path in the fluid relative to a reference ray travel-
ing to and from the cylinder’s axis. The approximate expression for the Rayleigh

contribution is then [17,32,33,34]

fR a _GRe—z(r—‘R)ﬁR eina i e-—zl’mﬂn ciztmkac/c;z. (2.56)
m=0

The radiation damping term Bgr accounts for the continual reradiation of energy
into the fluid as the surface wave encircles the cylinder. Note that this approximate
form assumes a constant Rayleigh wave speed and neglects dispersive effects. For
cylinders, the complex coupling coefficient Gy can be written in the approximate
form [17,34]

Gr =~ 87Bge'®® [Vrka. (2.57)

The other circumferential waves can be written in a similar form.
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The Franz creeping wave also circumnavigates the cylinder but the energy is
concentrated almost entirely in the fluid. The phase velocity is typically less than
the phase velocity of the fluid, thus the term creeping wave when compared to
the fast surface elastic wave (some authors use the term creeping wave for all the
circumferential waves, however we will reserve it for the Franz contribution).

The structure of the frequency response in the backscattered field can now be
interpreted in terms of the interference patterns generated by the various waves.
Sharp nulis appear in the scattered form function when one or more of these waves
are out of phase and destructively interfere. For dense elastic solids and moderately
high ka, the specular and Rayleigh waves dominate the scattered field [17,31] and

the approximate ray solution just considers these two wave types:

fSWTapproz & fa + fR- (258)

2.1.4 Deformed cylinder formulation

In a series of papers, Stanton [14,15,16] developed an approximate model for scat-
tering from elongated objects deformed along their major axis by making an analogy
between the far-field scattered pressure and the radiated pressure from a continu-
ous line source. Skudrzyk [21] shows that the sound pressure measured a distance
r from a point monopole source can expressed in terms of a volume flow Q

—tkpc
4nr

Qe'kr (2.59)

Pmonopole =

(we have changed Skudrzyk’s e~**" convention to e*" resulting in a solution that is
the complex conjugate of his). A line source can likewise be considered a continuous
distribution of point monopoles and Skudrzyk gives the differential pressure from
such a line source as

—1kpe

dpy, = po— gt dz (2.60)

where ¢ is the volume flow per unit length of the line source and r, is the dis-

tance from the receiver (or field point) to an arbitrary differential source element.
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Integrating over the line source gives the total pressure

—tkpc [ etk
= dz. .6
=—— | (2-61)

Skudrzyk transforms and evaluates the integral in Eq. (2.61)
ske,
/ = e__ dz = in H (kr) (2.62)

where r is the perpendicular distance from the receiver to the line source (r, > r).
Therefore

Pu = %kpché“(kr) . (2.63)

and using Eq. (2.16), the pressure in the far-field is

1 2
- t(kr—r/4)
Ps, 2, 4kp qﬂ — (2.64)

Stanton notes that the radiated pressure due to the line source in Eq. (2.64) is
similar in form to the scattered pressure from infinitely long cylinder in Eq. (2.50).
Since scattering is in essence the reradiation of the incident sound field by the scat-
tering body, an infinitely long cylinder is effectively a line source producing some
volume flow. This analogy is limited in that a line source produces an omnidirec-
tional field with respect to ¢ while Eq. (2.50) indicates that the scattered field from
a cylinder is highly directional. Equating Egs. (2.50) and (2.64), one derives g,, an

apparent volume flow per unit length for the infinitely long elastic cylinder

—41P,
kpc

Z €m SiN 7, 7™ cos(me) (2.65)

m=0

4a =

as observed in the ¢ direction. Modifying Eq. (2.60), Stanton derives an approxi-
mate generalized formula for the scattered pressure per unit length for an arbitrary

geometry
—1kpc
47r,

APacar = ga™ <) |drpal| (2.66)

where r,, is the position vector of a differential element on the cylinder axis, r,

is the distance from the element at rp, to the receiver (or field) point, and ¢, is
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Figure 2-3: Scattering geometry for a plane wave incident upon a deformed finite
cylinder with a point receiver. From Stanton [16].

the distance between the element on the axis and the plane that is normal to the
incident wave and contains the origin; see Fig. 2-3 (phase correction factor included
since the cylinder is no longer constrained to the z axis). Integrating over the

cylinder gives the total scattered pressure

—ikpc etk(retes)
scaty, = g os | - 2.67
Pasae = g~ | | dfpen | (2.67)

Inserting g, from Eq. (2.65) gives an approximate form for scattering from an elastic -

cylinder
-1 eik(r,-f-:.) 00 .
Pacaty, = — y————— ) _ €m SiN7Nm "™ cos(me) | drpo| (2.68)
T Jrpes Ts m=0

where the wavenumbers in the modal summation factor are multiplied by the sine
of the angle between the direction of the incident wave #; and the tangent to the

axis #an (i.e. replace all k in n,, by k|#; X Fian]).
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2.1.5 Modification for point source and receiver with arbi-

trary directivity patterns

Although Eq. (2.68) was derived assuming an incident plane wave, DiPerna and
Stanton [36] generalize the solution to include point sources by treating the incident
field at each differential element on the cylinder as locally plane. Equation (2.65)
can be modified to account for a spherically spreading field of a point source by
making P, a function of position

Por,

P,(Tpos) = etk (2.69)

where r; is a vector from the source to the point on the cylinder axis at rp,
r; = |ri|, and P, is the incident wave amplitude measured at a reference distance
r,. To accommodate the experiment described later in this thesis, we include gain
functions in Eq. (2.69) associated with the source radiation pattern and receiver
directivity response pattern [2]

P,r,

L]

PO(rP“) = D(ah i\"n-o.-.)-D(an i"rcv)e“h‘ (2.70)

where D(8,#) is the amplitude factor at an angle § from the maximum response
axis ¥, for and f.y are the maximum response axes for the source and receiver
respectively, §; is the angle between r; and #,., and @, is the angle between r,
and frev (Fig. 2-4). The gain functions are normalized such that D(6 = 0,#) = 1.
Inserting Eq. (2.70) into Eq. (2.65), substituting this into Eq. (2.67), and omitting
¢m Which is now implicitly included in r;, the general expression for scattering of
an incident spherically spreading wave with arbitrary beam pattern by a deformed

elastic cylinder is

pu:at,gc

T D(oi’ i.."C)D(oh ?rcv) X (271)

ik(r:
~ —Poro/ et (ritre)
Tpos TiTl,

[+ <]
> €msinny, e™™ cos(me) | drpa|
m=0
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Axis of deformed cylinder

Source

Figure 2-4: Scattering geometry for deformed cylinder and general bistatic geometry
(directional transmitter and receiver).

2.1.6 Extension to randomly rough cylinders

Using the deformed cylinder formulation, Stanton has derived approximate solutions
for scz ‘ering from a wide variety of elongated objects, each of which is modeled
using Eq. (2.67) with the appropriate choice of g, for the material properties and
drpee for the geometry of the scattering body. Recently, he has used this deformed
cylinder formulation to analyze the effects of surface roughness on the scattered
field (17,18]. The roughness is modeled as an axially dependent perturbation of the
radius, ¢(Tpes), about some mean value a(rpe). The formulation assumes that the
perturoation is slowly varying and allows for the quantitative analysis of random

surface roughness on otherwise regular objects. The surface profile is given as
arc (Fpos) = (Tpos) + $(Tpos)- (2.72)
The perturbation ¢(rp.) is a zero mean stochastic variable such that
($(rpes)) =0 and (arc(rpes)) = a(rpa). (2.73)
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Source/Receiver

Figure 2-5: Geometry for (monostatic) backscatter from a rough infinitely long
cylinder aligned along z axis. The mean radius a, and perturbation, ¢(z), compo-
nent of the surface profile apc(z) are shown.

Adding surface roughness to a straight circular cylinder aligned along the z axis

with constant radius e, yields (Fig. 2-5)

arc(z) = a,+¢(2)
(arc(2)) = a, (2.74)

2.2 Explicit solution for rough infinitely long cylin-
ders

Given the deformed formulation in Section 2.1, we can derive an approximate ana-
lytical result for backscattering from a randomly rough elastic cylinder. Considering
the monostatic case where the source/receiver is at a distance R from the cylinder

axis which is aligned with the z axis and where the directivity response patterns are
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confined to relatively small angles, we approximate the gain functions as Gaussian

with characteristic beamwidth 6, [37]
D(0i, fure) = D(0s, #rey) = €~ ((7/263), (2.75)

The maximum response aXis #yc/rcv is aligned normal to the cylinder axis and along
the z axis (Fig. 2-5). Thus setting § = arctan(z/R), ¢ = 7, r; = r, = VR? + 22,
and |drp.| = dz, Eq. (2:71) simplifies to

—P.r, (o gi2k(R*+s2)1/?
Pacaty, = —— /_ oy e~ (3/02)° (2.76)
(- -4
Y em(—-1)™sinnm e ™ dz
m=0

where

Nm(ka) = np (kcos b [a, + ¢(2)]) = m (k l[ao +¢(2)] /Y1 + (z/R)’) . (2.77)

According to Eq. (2.76), the beamwidth of the source/receiver with respect to the
first Fresnel zone diameter determines whether the scattered field spreads cylindri-
cally or spherically.

The Fresnel (or Huygens) zone is the insonified area from which the scattered
waves add constructively at the receiver {21,38,39]. For a planar surface insonified

by a point source/receiver, the first Fresnel zone is a circle with diameter
F.Z. diameter = Vv2r) (2.78)

where r is the perpendicular distance form the insonified plane to the source/receiver
point. In scattering theory, the length of a cylinder with respect to the first Fres-
nel zone diameter determines the characteristic spreading law of the scattered field
[14,36,39,40]. If the cylinder is much longer than the first Fresnel zone, the cylinder
may be considered infinite and the scattered field spreads cylindrically from the
target. If the cylinder length is small compared to the first Fresnel zone, then it is
considered finite and the scattered field spreads spherically. In the case of a spher-

ically spreading incident field with a narrow beam, the beamwidth ©, determines
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the effective length of the cylinder. If ©, is very narrow such that the segment of
the cylinder insonified by the source is less than the first Fresnel zone diameter, the
backscattered field will spread spherically (even though the cylinder itself may be
much long than the first Fresnel zone). Likewise if the beamwidth is wide enough
to span several Fresnel zones (but not the ends of the cylinder) the cylinder is ef-
fectively infinite and the backscattered field will spread cylindrically (even though
the target may be of finite length).

For this work, we will consider the last case where the beamwidth is wide enough
to span several Fresnel zones and the scattered field spreads cylindrically. It is
customary to introduce the far field form function f® to give a nondimensional

representation of the scattered pressure for kr > 1:

a .
Pscat = POV 5;" e'k' foo. (2.79)

While some authors use “co” to identify the kr > 1 case, all results presented here
are for kr > 1 so the distinction is not made; the “oo” here refers to the infinite
length of the cylinder. Replacing the incident plane wave field P, with a spherically
spreading field given in Eq. (2.69), Eq. (2.79) becomes

Po :
Pucar = —221[ =2 €HF fo°. (2.80)
r 2r

Using Eq. (2.76), the far field form function for the infinitely long elastic cylinder is

. 2 2y1/2
o o R 2R _iup / w gEr e~ (20/80)° (2.81)
rough T a, -00 R? -+ 2?
baid -
Y em(—1)™sinny, e dz
m=0

where roughness effects agrc(z) are implicit in n,,. This equation represents one
realization of the scattered field due to a single stochastically rough cylinder. From
Eq. (2.81), we can directly write expressions for the mean and mean square scattered

fields for backscatter from an ensemble of statistically independent infinitely long
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rough elastic cylinders

REEE

/oo e-"u:(ll’ﬂ’)'/’

W 28y

Y m(—1)™sin nme~*"™ dz >
m=0
and
N oo co2k(R’+s’)‘/’ _
(2t} = (B) 2 S o s

00 . 2

Z €m(—1)™ sinn, e dz > .

m=0

Here (---) represents the average across an ensemble of statistically independent
surfaces. Evaluation of these last two equations is typically performed numerically
although simplified versions of them involving ray solutions have been solved an-
alytically to illustrate some of the basic physics of roughness-induced scattering

phenomena [17,18].

2.3 Fluctuations in the scattered field

The scattered field from a rough cylinder (Eq. 2.81) will fluctuate from realization to
realization due to the random surface profile. If we consider a set of measurements
involving independent realizations, the scattered field f for each measurement can

be expressed as the sum of a mean, (f), and fluctuating component, § f

=(f) +6f (2.84)
where (6f) =

and (f) is the ensemble average across all the measurements. Figure 2-6 illustrates
this relation in terms of a phasor diagram.
Many investigators have shown that the Rice probability density function (PDF)

may be used to describe echo fluctuations due to surface roughness [4,18,41]. This
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Figure 2-6: Phasor diagram showing mean and fluctuation components of echo.

distribution was originally derived to describe the statistics of the envelope of a sine
wave corrupted by additive noise [42]. Rice showed that the PDF for the random
amplitude A of a sine wave of rms value S summed with zero-mean Gaussian white

noise with a mean square value of (N?) is

wr(4) = ?1%5 exp (-é;(_“l“v%sf) Io (%:)—S) (2.85)

where I is the modified Bessel function. Defining a shape parameter < as the ratio

of the signal energy to the noise energy
v = S?/(N?), (2.86)

it is possible to rewrite Eq. (2.85) as a function of the shape parameter (4]

wr(A) = %ﬁl exp (-(1 + ")(AA’,;’ 4% ) Io(¢) (2.87)

where
" _ 2‘4['7(1 + '7)11/2
- (Az)l/z :

Considering rough surface scattering, the mean field (f) is analogous to the sine

wave or signal in the Rice PDF and the fluctuations é f analogous to the noise [18].
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The Rice PDF can then be used to describe the distribution of ﬁuctuatioxis in the
scattered field

we(f) =

210 +7) (_ T+ NP+ W(UI’)) Io(¢) (2.88)

(717 (171

where
g = A+ ) s
- TiBEE )
The PDF, wg(f){|f|?)!/?, is a function of |f|/{|f|*)*/* and ~ as illustrated in Fig.

2-7. The Rice distribution becomes the Raleigh PDF for v = 0 and asymptotically

approaches the Gaussian distribution for v > 1.

When the cylinder is very rough, the scattered field is dominated by fluctua-
tions due to the random surface profile. This is analogous to a pure noise field
and characterized by a Rayleigh-like PDF (v < 1). When the surface becomes
acoustically smooth, the field fluctuates very little (v > 1) and the distribution of
|f*°| will become a narrow Gaussian tending toward a delta function. There is a
smooth transition between these two cases for intermediate values of 4 and surface

roughness.
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Figure 2-7: Rice PDF of scattering amplitude for various values of 4. For y =0
the curve is the Rayleigh PDF and for ¥ >» 1 the Rice PDF approaches a Gaussian.
PDF = wg(f)(|f]*)'2. |
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Chapter 3

Numerical Analysis

The formulations derived in Chapter 2 for rough cylinder scattering (Egs. 2.82 and
2.83) do not have closed form solutions but do provide a framework for numerical
solution using standard techniques of numerical integration. However, before we can
consider solution methods, we must first define the random surface profile, which
in turn raises the questions of what do we mean by “random” and how can we

deterministically model such a process.

3.1 Modeling of surface roughness

The formulation in Section 2.2 assumes a zero mean random perturbation which
slowly varies along the axis over the local scale. A Gaussian white noise process
satisfies the zero mean requirement but each point is completely decorrelated from
the next. Thus the surface would contain an assortment of jagged edges and dis-
continuities which our model does not allow. However, a bandlimited Gaussian
white noise process provides a smooth variation from one point to the next due to
the cutoff of the higher frequencies (an impulsive discontinuity requires an infinite
number of frequency components). This is similar to the theory of bandlimited

electrical circuit noise investigated by Rice [42]. Rice showed that some forms of
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random circuit noise are bandlimited Gaussian white noise and could be modeled
as a sum of random sinusoids

It) = i €n Sin(wat + ©,) (3.1)

n=1
where ¢, is a random amplitude, w, is a random angular frequency, and ¢,, is
a random phase. If N is sufficiently large, then, from the central limit theorem,
the distribution of I(t) will be Gaussian. Stanton [17,18] uses this formulation to
model the random surface perturbations for a rough cylinder. Changing from a
bandlimited random time series to a bandlimited random spati@.l series, the random

surface perturbation is modeled by

N
¢(z) = 0.\/6/N Z—: pnsin(Knz + 6,) (3.2)

where o, is the desired rms roughness for the profile. The random amplitude co-
efficients u, are uniformly distributed between 0 and 1, the spatial wavenumber
components, K,, are uniformly distributed between the bandlimits Kjow and Kpigh,
and the phase factors, 6,, are uniformly distributed between 0 and 27. A random
number generator is used to seed these variables and the factor \/G/_N (in this case
N = 100) is included as a normalization constant for the variance since the desired
variance is o?. Figure 3-1 shows a histogram of the perturbation output from this
algorithm illustrating the underlying Gaussian nature of the process. It appears as
if there is a slight skew in the distribution near the peak at ¢ = 0 but checks ver-
ified this algorithm produces a zero mean distribution (within numerical roundoff
errors). This slight shift in the peak appeared in many of the simulations (Fig. 4-3).

In order to establish bandlimits for the surface profile, we must consider the cri-
teria necessary to consider a given surface acoustically rough. Very low frequency
components in the surface spectra correspond to long undulations in the profile. If
these undulations are much longer than the acoustic wavelength and/or the insoni-
fied area of the target, the surface will appear acoustically flat with some nonzero

slope. The coherent reflection is determined by the first Fresnel zone [39] so if the

40




PDF

0 Ll L P N — A 2
-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

Radius perturbation (cm)

Figure 3-1: Histogram for rough surface simulation showing Gaussian nature of
the profile statistics. 100 random sinusoids were summed to provide the profile.
The input rms roughness o, was 100 um. The area under the histogram has been
normalized to 1 to give a perturbation PDF. The superimposed Gaussian PDF was
calculated with the same standard deviation o,.
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surface varies over the extent of the first Fresnel zone diameter, the surface will ap-
pear acoustically rough at that particular frequency. We arbitrarily set the surface
wavenumber bandlimits, Kjw and Kpign, such that at least ten wavelengihs (A) of

the surface profile fit within the first Fresnel zone at all frequencies of interest:

A= ”12(';’\ (3.3)

2
Kiimit = 10/ 1 (3.4)

where ) is the acoustic wavelength and r is the source/receiver to target separation.

giving

For a given simulation, three 100 element arrays of random numbers were gen-
erated to uniformly distribute the amplitude, wavenumber and phase variables in
Eq. (3.2) over their respective bands. Then the 100 sinusoids were summed for each
value of z in the profile. The central section of each profile ( -25 cm < z < 25
cm) was calculated at intervals of 0.01 cm (highly oversampling the surface), and
these values formed a look up table from which the perturbation could be linearly

interpolated for any value of z.

3.2 Evaluation of integral

In order to chose an efficient numerical integration algorithm, we must investigate
the nature of the integrand in Eq. (2.81). The infinite modal summation term in
the integrand provides all the information about the resonant and scattering modes
of the target. This summation quickly converges when m =~ ka so we summed the
first ka + 10 terms to approximate a converged sclution. Figure 3-2 illustrates a
typical converged solution. The solution shows a general smooth oscillatory nature
with sharp nulls where the function is not analytic (higher order derivatives do not
exist).

Using this converged summation, we can analyze the integrand of the scattered

field form function (Eq. 2.81) as a function of z. Since we have a spherically spread-
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Figure 3-2: Converged modal summation for 0 < ka < 30. The summation quickly
converges for m X ka so the limits of summation were changed from T2, to Tkatlo
for efficient calculation.

ing incident wave and we are assuming the incident field is locally plane at each
point on the cylinder, ka is no longer constant in the modal summation term even in
the zero roughness case. The value of ka decreases as we move away from z = 0 and
ka(z) = ka/ m where R is the source/receiver to target separation (Eq.
2.77). If the summation term were slowly varying, we could consider asymptotic
approximations to the integral such as the method of stationary phase [21]. How-
ever, Fig. 3-2 shows that the summation term is not analytic at the sharp nulls thus
making the asymptotic approximations invalid near these regions. Figure 3-3(a)
shows a typical integrand calculated in a slowly varying region away from any nulls.
The broad central region corresponds to the first Fresnel zone and the oscillations
with increasing z come from the phase shifts in subsequent higher order Fresnel
zones. The integrand shows a quick decay due to the Gaussian beam pattern and
2~? dependence in the integrand. Since the oscillating tails associated with the

higher order Fresnel zones tend to cancel one another, the stationary phase method
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approximates this integral as the area under the broad central maxima, the region
due to the first Fresnel zone. Figure 3-3(b) illustrates the behavior of the integrand
near a null. For ka values just above a null, the local normal component of ka
(ka(z) = ka/ m) will match that of the null location at some point in the
main section of the integrand destroying the regular Fresnel zone oscillations. The
higher Fresnel zones no longer cancel and, as we show, this leads to oscillations in
the integrated solution for ke values directly above nulls. Figures 3-3(c) and (d)
show the complicated structure of the integrand once when surface roughness is also
included.

Since the integral can vary rapidly (Fig. 3-3(d)), an extended trapezoidal inte-
gration scheme is necessary to achieve convergence [43,44]. The indefinite integral
is divided into subintervals, then a coarse approximation to the integral of each

subinterval is made using a two step trapezoidal rule
— a3
[ 10e=252 L@+ s+ + jrw) + o (L) o

Now halving the step size, the error in the approximation is decreased by factor of

b—a
2

4, and the second stage trapezoidal approximation is

[ 11de = 2Z2[7(0) + 7((30 +8)/4) + T((a+ B)/2)+
f((a +3b)/4) + %f(b)] +0 (ﬁ’%;)sf—) (3.6)

This second stage uses all the information calculated in the first stage and adds
two new interior points to refine the approximation. We can iteratively repeat
this process, halving the step size and adding 2"~! points at the nth stage, until the
fractional error between subsequent stages (and hence an estimate of the accuracy of
the approximation) falls below some bound ¢,. This adaptive trapezoidal algorithm
iteratively finds the appropriate step size for any given subinterval of the integral
and error bound €;. This provides a robust method of integrating the integrands
where the higher order derivatives do not exist (Fig. 3-3(d)) and the appropriate

step size is initially unknown.
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Figure 3-3: Real part of integrand for infinite cylinder. (a) and (b) represent
typical smooth cylinder integrands while (c) and (d) correspond to rough cylinder
(0, = 60 um) integrands for the same values of ka. The value of ka (ka = 11.3) in
(a) and (c) is in a slowly varying region of the modal summation, away from any
nulls. In (b) and (d), ka = 12.75 is just above a sharp null in the modal term. The
imaginary part of the integrand shows the same structure.
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The algorithm calculates the integral of the central first Fresnel region (the in-
tegrand is very smooth and converges quickly with a coarse step size) then begins
marching out from the first Fresnel zone calculating new subintervals separately
(these require a finer step size due to the oscillations in the integrand). This al-
gorithm continues adding intervals until the total integral converges within some
error bound &,. Since subsequent subintervals have an ever decreasing contribution
to the total integral (due to the rolloff seen in Fig. 3-3), the algorithm iterates a few
times to estimate the magnitude of the integral for a given interval and then relaxes
the trapezoidal error bound &; based on the magnitude of that subinterval integral
relative to the magnitude of the total integral. Whereas we need to calculate the
first Fresnel region (the main contribution to the total integral) to a high accuracy,
the contributions to the total integral from a subintervals out in the tails will be
several orders of magnitude less than that of the first Fresnel region and there is no
need to calculate these “tail” regions to the same order of accuracy.

Although this adaptive trapezoidal scheme is robust, it can be very slow and
since the numerical integration scheme must be repeated for each value of ka, this
leads to inordinately long computation times. Even with surface roughness in-
cluded, some regions of ka (Figures 3-3(a) — 3-3(c)) appear sufficiently smooth
for higher order integration techniques which require higher order derivatives of
the integrand to be finite. One method, Romberg integration, closely follows the
trapezoidal scheme already developed. At each stage in a trapezoidal scheme, the
Romberg method considers all the estimates from the previous k stages as a se-
ries and extrapolates the series to its limiting value for a step size of zero. If the
integrand is sufficiently smooth, this method will converge must faster with fewer
evaluations of the integrand than the strict trapezoidal scheme (Press et al. give a
typically example where the Romberg method required 28 fewer functional evalua-
tions than a trapezoidal routine for the same accuracy [44]). By saving the previous

estimates from the trapezoidal scheme as the step size is reduced, we can parallel
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both methods, stopping the iteration as soon as either method converges. Thus
we get the speed of the Romberg method for sufficiently smooth intervals, and the
robust convergence of the trapezoidal method for non-analytic regions. Using both
methods in parallel decreases computer run times by over a factor of two.

Both integration schemes require many evaluations of the integrand over very
small step sizes. This requires converging the modal summation term for many
closely spaced values (and in many cases the same value) of ka. In turn, each
term in the modal summation requires the calculation of several Bessel function
to compute 7,, (Eq. 2.48). This creates a bottleneck which limits the processing
speed. For a given set of realizations, we first calculated the modal summation
term on a fine grid (Aka = 0.01) over the entire ka range of interest. These values
formed a look up table from which other values could be interpolated. Comparisons
between using the exact modal sum and interpolated values in the integral showed
small interpolation errors for ka values right at a sharp discontinuity in modal
summation (ke = 12.62) but average relative errors of the order 10-® for regions
away from any sharp nulls or discontinuities. Interpolating the modal summation

term further decreases run times by 2 orders of magnitude.

3.3 Comparison of smooth and rough cylinder so-
luticns

Using the numerical schemes developed in Section 3.2, the scattered field from an
infinitely long elastic cylinder with a point source and receiver (Eq. 2.81) can be
computed. The input parameters used, which are similar to those in our experiment,
are: source/receiver to target separation R = 24 cm; characteristic beamwidth of
the source/receiver ©, = 26°; sound speed ¢ and density p of the fluid, 1477 m/sec
and 1.0 g/cc respectively; and material properties of the elastic cylinder, ¢; = 5790

m/sec, ¢, = 3100 m/sec, and p; = 7.9 g/cc (values for stainless steel from [45]).

47




1.2 —r

0.8}

Ift

0.6

04

0.2H

0 5 10 15 20 25 30
ka

Figure 3-4: Magnitude of the backscattered form function (| f| = |f*°| from Eq. 2.81)
from a smooth infinite-length elastic cylinder for a spherically spreading directional
source and receiver with a Gaussian beam pattern. This numeric solution is based
on the approximate deformed cylinder formulation. Input variables are sound speed
for fresh water ¢ = 1477 m/s, and the material properties for stainless steel ¢, =
3100, ¢; = 5790 m/s, and p; = 7.9. The source distance and beamwidth were R =
24 cm and ©, = 26°. Rapid oscillations at ka =~ 6, 12, 16, 19, etc. are due to the
incomplete cancellation of higher order Fresnel zones near sharp modal nulls due to
the spherically spreading incident field.

Figure 3-4 shows oscillations in the scattered field for ka values directly above sharp
discontinuities in the modal summation. These oscillations are due to incomplete
cancellation of the higher order Fresnel zones when ka cos # matches the modal null
ka as shown in Figures 3-3(b) and (d).

This numerical scheme can also be used to perform Monte Carlo simulations for
rough cylinder scattering. Multiple independent random profiles can be computed
from Eq. (3.2) using the same surface statistics, and the scattered field from each
of these realizations can numerically integrated. Figures 3-5 — 3-8 show the fluc-

tuations in the scattered field for 150 simulated cylinders at different values of the
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Figure 3-5: Backscattering from randomly rough infinite-length elastic cylinders
for a spherically spreading directional source and receiver with a Gaussian beam
pattern and fractional roughness o,/a = 0.005. The scatter plot superimposes field
solutions for 150 simulated realizations. The elastic material properties are the
same as Figure 3-4 and the surface roughness bandlimits are Kjow = 169 m~! and
Khigh = 2934 m~! . As ka increases, variability is shown to increase indicating
increased effects due to roughness.

fractional roughness g,/a. The relative fluctuations in the field are dependent upon
the relative roughness ko, with a theoretical transition between the low and high
fluctuation regions at ko, ~ 0.5 [17,18]. This transition point occurs at ka = 25 in
Fig. 3-7 and ka = 12.5 in Fig. 3-8. Taking an ensemble average over the simulation
at each value of ka, the mean and mean square fields (Eqs. 2.82 and 2.83) can be
found from the same numerical data (Fig. 3-9). Figure 3-9 shows a general decrease
the mean field with increasing roughness. Stanton [17] shows that the specular and
higher order (m > 0) Rayleigh waves are attenuated at a much higher rate than the
m = 0 Rayleigh wave due to one-dimensional surface roughness. This causes the
rolloff in the mean field level and the decrease in the mean field oscillations seen in

Fig. 3-9.
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Figure 3-6: Backscattering from randomly rough infinite-length elastic cylinders
with fractional roughness o,/a = 0.0131. See Figure 3-5 for details.
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Figure 3-7: Backscattering from randomly rough infinite-length elastic cylinders
with fractional roughness o,/a = 0.02. See Figure 3-5 for details.
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Figure 3-8: Backscattering from randomly rough infinite-length elastic cylinders
with fractional roughness o,/a = 0.04. See Figure 3-5 for details.

&
Vv
1 . , 1 . .
©) (C))
os} o8}
0.6 0.6 ‘
& &
V o4 vV 04 -
02 02}
0 — 0 N

10

ka

20

Figure 3-9: Mean backscattered field from randomly rough infinite-length elastic
cylinders for various values of fractional roughness g,/a. Solutions for mean field
calculated from an ensemble average of 300 simulated realizations. (a) is mean of
data in Fig. 3-5, (b) Fig. 3-6, (c) Fig. 3-7, and (d) Fig. 3-8.
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Analyzing the variance, alzf,', of the fluctuations for a given value of fractional
roughness (Fig. 3-10) shows a clear increase in field fluctuations with increasing
relative roughness, ko,, and a transition to “saturation” (Rayleigh-like distribution)
at ko, = 0.5. The theoretical Rice PDF shape parameter, 4, can be estimated from
the field statistics for low fluctuations [18]

oo |2

= -<2|—£TL|). (3.7)
However for v < 10, this low roughness approximation is not valid and a least square
fit was performed, comparing the fluctuation distribution to the Rice PDF while
varying - from 0 to 10 in increments of 0.1. Histograms of the scattered field show
that the Rice PDF provides a good approximation for the fluctuation distribution
at ka values away from modal nulls over the entire roughness scale (Fig. 3-11). At
low ka (ko, < 1) the fluctuations are small and the histograms have a narrow
Gaussian-like character (7 > 1). As ka (and ko,) increase, the surface becomes
acoustically rougher and the fluctuations in the field increase. The PDFs broaden
and approach a Rayleigh curve (v = 0). Figure 3-11 is indicative of the close fit
between the Rice PDF and the fluctuation distributions over most ka values.

For ka values near a null, one would expect a bimodal distribution of the fluctu-
ations due to the discontinuity in the modal summation. Some realizations would
represent field fluctuations about a mean (|f*°|) for a ka on one side of the discon-
tinuity whereas realizations with ke on the other side of the discontinuity would
fluctuate about a different {|f*°|). This should result in a non-Ricean bimodal PDF.
Stanton and Chu (18] note some skewing in fluctuation histograms for ka near nulls.
We see similar results in the numerical simulations but no clear bimodal pattern.

Figure 3-12 summarizes the changing shape of the field PDF showing v calcu-
lated for every value of ka in the numerical solution. The figure shows the strong
dependence v on k (trend of v & k~*) in the region of low roughness (y — o0). In
the region of high roughness (ko > 0.5), the fluctuations are large and v (~ 0) is

essentially independent of k.
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Figure 3-10: (a) Variance (of,;) and (b) relative variance (o()/{if|?)) for
backscattered field from randomly rough cylinders. Numerical simulation based
on 300 realizations for o,/a = 0.0131.
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imposed with shape parameter « calculated from the fluctuations of |f*)|.

54




10¢

105 |

104 |

103 +

Gamma

102 |

101

100 |

10-] e A I i A Y A A |
100 10! - 102 ka

102 101 10° ko,

Figure 3-12: Rice PDF shape parameter <y plotted against ka and ko,. 300 numerical
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in 4 as k increases and the transition to saturation at ko, =~ 0.5. '
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Chapter 4

Experimental Measurements

A series of experiments were designed to quantitatively measure the roughness re-
lated effects in the scattered field discussed in Chapters 2 and 3. While there is a
large body of published data for rough planar surface scattering with application
to ocean bottom or sea surface problems, only recently has attention been given
to the more general problem of rough three dimensional objects. Furthermore, in
much of the published rough surface data, the surface profile and statistics are not
quantitatively known a priori. In the experiments described here, an exact surface
profile was designed based on the mathematical models in Section 3.1 and then
precisely manufactured. Thus accurate comparisons can be made between the mea-
sured scattered field and analytical expressions using the theoretical formulations

developed in Section 2.1.5 with the known surface profile.

4.1 Target design and manufacture

A rough cylinder target was manufactured from six 3/8” 303 stainless steel stock
cylinders. Previous investigators [31,32] have used tungsten carbide as an elastic
medium since it is very dense (p = 14 g/cm®) and thus transmitted bulk waves

are insignificant over moderate ka ranges (ka < 100). This allows a simplified
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Figure 4-1: Cutaway diagram showing target and threaded pin joining different
subsections. Each rough subsection is = 15 cm long and has a mean diameter
0.9126 cm. Threaded pins 0.47625 cm in diameter and 1.27 cm long were used to
screw the pieces together.

ray solution (Section 2.1.3) interpretation in terms of the dominate specular and
Rayleigh components only. Stainless steel was chosen for these experiments since it
is machinable and also relatively dense (p = 7.9 g/cm®). It would have been very
difficult to precisely lathe a series of tungsten carbide targets. Each subsection had
a 3/16” x 1/2” hole drilled and tapped in each end and threaded pins made from the
same 303 stainless steel were then used to screw the subsections together (Figures
4-1 and 4-2). Care was taken during manufacture to minimize any possible voids
between the ends of the pins and the bottoms of the tapped holes. The sections
were assembled underwater to avoid internal air bubbles and thus approximate
one continuous isotropic elastic cylinder. Two 8” 303 stainless steel cylinders were
machined smooth to the same radius as the rough cylinder mean radius. Each was
drilled and tapped on one end only giving a smooth cylinder “standard” target

40.64 cm long.

The target perturbation profile ¢(z) was generated using Eq. (3.2) where the
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bandlimits for the surface were based on the first Fresnel zone diameter. The
experiment was initially designed based on a source/receiver to target separation
of 70 cm and a frequency range of 350 kHz to 3.5 MHz. Assuming a sound speed
in water of ¢ = 1500 m/s, the first Fresnel zone (Eq. 2.78) ranges from 7.75 cm
at 350 kHz to 2.5 cm at 3.5 MHz. Using the criteria for the surface bandlimits
derived in Chapter 3 (Eq. 3.4), the design bandlimits for the target surface were
Kiow = 811 m~! and Kpign = 2565 m~!; and the input RMS roughness, g,, was 60
pm.

The perturbation ¢(z) was calculated at intervals of 0.01 cm over an entire
meter using the above parameters. This profile was then divided into six sections,
each approximately 15 cm long, such that the dividing points between sections
corresponded to zero crossing points in the perturbation profile. A mean radius

value a, = 0.45625 cm was added to the perturbations giving a radius profile
arc(2) = a, + ¢(2). (4.1)

These profiles were then formatted and transferred to a computer-controlled lathe
and the surface profiles were cut into the six cylinders (Fig. 4-2). Due to memory
restrictions in the milling machine, each file had to be compressed prior to down-
loading. Using an adaptive downsampling algorithm, regions in the profile where
the surface had a slowly varying slope were sampled coarsely (high degree of down-
sampling based on local “flatness” ) whereas regions where the slope varied rapidly
were sampled at a much finer interval (little or no downsampling). This generated
files where the surface no longer had a regular sampling period dz but rather was
defined by a series of points (2,arc(z)). These files were converted to inches, ra-
dius values multiplied by 2 to give diameter, and rounded to the nearest 1/10000”
(the tolerance of the lathe). After this conversion and rounding the specified mean
diameter was .3593” giving a final mean radius of 0.456311 cm. Each of these files
were loaded into a computer-controlled lathe which linearly interpolated between

the data points as it milled the specified surface.
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Figure 4-2: Six rough cylinder subsections comprising randomly rough target shown
to scale.
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__Section Mean (m) Standard deviation (m)
“Section1 | —6.38x 107 5.87 x 10~°
Section 2 | —1.295 x 10~° 5.99 x 10~°
Section 3 1.34 x 10™° 5.87 x 10~°
Section 4 —-6.91 x 10~ 6.05 x 10~
Section 5 —1.07 x 10™° 6.01 x 10~°
Section 6 -5.37 x 10~ 5.64 x 10~°
| Total surface [ —7.0 x 10-7 5.90 x 10~°
Design spes 0] eoxn]

Table 4.1: Rough cylinder target surface statistics. The sample means and standard
deviations are based on reconstructed profiles from the actual lathe control files.
The total surface values are based on concatenating the sections end to end. The
design specs are from the input values to the numerical routine that generated the
surface profile.

In order to check for any errors due to quantization or downsampling artifacts,
the surface statistics were analyzed from these machine specification files rather
than the original perturbation profile. Each file was converted back to a radius vs.
z listing in cm. Then a regular sampling period of 0.01 cm was restored by linearly
interpolating between the existing points. Finally a mean radius of 0.456311 cm was
subtracted from all the points returning to a perturbation profile. Table 4.1 lists
the first and second order statistics for the six target subsections and the overall
target made by concatenating all six subsections end to end. The small bias in
the mean values is due to rounding errors. The original design mean diameter was
0.9125 cm or 0.359252”. After rounding to the machine tolerance, the diameter at
the zero crossing points in the perturbation profile became 0.3593” or 0.91262 cm
and this value is used for the mean diameter for the remainder of this work. This
error is only 1.5 parts in 10000. Figure 4-3 shows histogram plots of the radius
perturbation for each of the target sections illustrating the Gaussian nature of the
actual surface. Superimposed on each histogram is a Gaussian PDF with standard

deviation from Table 4.1. The amplitude for each PDF was fitted by normalizing
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the area under the histogram to 1.

Micrometer reading were taken at numerous locations on the rough cylinders and
compared with the design profile. The mean error in diameter over all measurements
was -6.8 um and the standard deviation was 37 um. This is within the instrument
error of the micrometer + 12.7 um. An optical comparator was used to compare of
the target profile “waveform” with the design profile. These qualitative checks also
verified the actual targef profile matched the design profile.

An estimate of the surface profile power density spectrum was made using the
maximum entropy method (MEM) algorithm [44,46]. This method provides better
resolution than traditional Welch or periodogram methods [47] due to the narrow
bandlimited nature of the surface spectrum. For an ideal bandlimited white noise
process, the power spectrum is perfectly flat within the bandlimits with a sharp cut-
off at the band edges and the process sample are completely uncorrelated. Figure 4-4
shows that the actual power spectrum is fairly uniform within the bandlimits and
has a strong roll-off at the design band edges Koy = 811 m~! and Kpign, = 2565 m~1.
The spectral peak at K = 1100 m~! was caused by a bias in the random number
generator used in routine that calculated the original perturbation surface. After
the target was manufactured, it was discovered that the 100 random numbers used
to randomize the wavenumber values in Eq. (3.2) were not uniformly distributed
between 0 and 1 but contained a small correlation peak around 0.165. This resulted
in a preferential weighting toward K = 1100 m™? in the target profile. Even with
this spectral weighting artifact, Fig. 4-4 shows that the target surface spectrum is
still fairly flat over the band of interest and a good approximation to a bandlim-
ited white process. The surface autocorrelation function &,, (Fig. 4-5) also shows
that the surface quickly decorrelates as one expects in a white process. The strong
negative correlation around the central peak at r = 0 lag is believed to be related
to the spectral peak discussed above and the fact that the surface is slowly varying

rather than completely decorrelating between neighboring points as in a true white
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Figure 4-3: Histogram of radius for each of six rough surface subsections (a) — (f)
and entire composite target profile (g). A Gaussian PDF has been superimposed
on each plot highlighting the Gaussian nature of the profile statistics.
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MEM estimate of target surface spectrum
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Figure 4-4: MEM estimate of the surface power density spectrum. The spectrum
shows the good approximation between the actual surface and a bandlimited white
process. The design band edges are Koy = 811 m™! and Kyign = 2565 m™1.

noise process.

Due to physical constraints in the ultrasonic test tank used, the data was col-
lected with a transducer/target separation of R = 24 cm, quite closer than the
70 cm originally planned. This effects the ratio of the surface wavelengths to the
Fresnel zone size. At 24 cm the upper bandlimit Ky;g should have been 4380 m™1
using the 10A criteria. Even though the actual target bandlimit Kpin = 2565 m™!
is too low by a factor of 2, it still provides 5.9 surface wavelengths over the width
of the first Fresnel zone at 3.5 MHz and the surface remains acoustically rough over

the entire frequency range.
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Center section of surface autocorrelation function
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Figure 4-5: Autocorrelation (®,,) function for the target profile (only center 20 cm
of lag r shown).

4.2 Experimental set-up and alignment

The experiment was conducted in 2 1 m x 1 m x 0.5 m ultrasonic test tank at the
Earth Resources Laboratory of M.I.T. This tank contained alignment apparatus
necessary in conducting this experiment. Two closely spaced transducers were used,
one as transmitter and one as receiver, approximating a monostatic configuration.
Both transducers were identical 1” diameter Krautkramer Branson transducers with
a center frequency of 2.25 MHz. Due to the inherent damping in the ceramic and
backing material, they provided (by design) a continuous broadband response from
approximately 300 kHz to 3.5 MHz. At these high frequencies, typical flat piston
transducers have a very narrow beam. In order to create a wider beam, these
transducers were custom made; they were shaped as spherical caps increasing the
beamwidth to about 20 degrees [36,48].

The ultrasonic test tank was equipped with two computer-controlled 3-axis mo-
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Figure 4-6: Side view of test tank showing mounting of transducers and targets
approximating a monostatic backscattering measurement.

tion bridges allowing precise movement of each bridge in any direction. Aligning
the target cylinder z axis parallel to the long z' axis of the motion bridges (Fig. 4-6),
we were able to traverse the transducer mount down the length of the target while
holding the orientation constant. In addition, we were able to change the target
and mount several different length cylinders and maintain the system alignment.
This proved critical considering the very short acoustic wavelengths used for this

experiment.

The formation of air bubbles on the transducer faces and target was also a
constant problem during the measurements. The tank was filled with fresh water
and allowed to sit and degas for a week prior to taking data. This allowed any
suspended particulate matter to settle and minimized the amount of gases dissolved
in solution. Clay and Medwin [2]| derive an approximate relation for air bubble

resonance at sea level
~ 3.25 x 10°

fa= 2(um) (4.2)
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where fgr is the resonance frequency and a is the bubble radius. In the frequency
band of interest, bubbles between 10.8 and 0.93 um would resonant and corrupt the
data. Throughout the experiment, a wetting agent (ordinary liquid hand soap) was
applied to the transducer faces and target surface to eliminate any microbubbles on
the elements and provide good acoustic coupling to the water.

Two basic geometries were used for these measurements. First a series of beam
pattern and calibration measurements were taken with the source and receiver
placed facing one another across the tank. The two transducers were mounted
on separate bridges and aimed toward one another. The bridges were brought to-
gether until the transducer faces touched and final orientation adjustments were
made, then one bridge was traversed straight back 30 cm, maintaining the trans-
ducer orientation and allowing an accurate measure of the transducer separation.
The source was mounted on the end of one of the stepper motor drive shafts so it
could be rotated through a large azimuth angle while the separation was held con-
stant (Figures 4-7(a) and 4-8(a)). Measurements were taken through +40 degrees
in 2 degree steps.

For the backscattering measurements, the transducers were mounted side by
side on one bridge facing down at the target (Figures 4-7(b) and 4-8(b)) mounted
24 cm below. One target mount was connected to the side wall of the tank and
the other mount was connected to the second motion bridge thus allowing the
mount separation to be adjusted during the measurements while maintaining the
target alignment. During the experiment the backscattered field was measured at
several different positions down the length of the target cylinder’s axis. Since the
transducers had a limited beamwidth, this provided measurements of independent
realizations of the random surface profile. Lowering the transducers until they
almost touched the target surface and then traversing the transducer bridge down
the z axis of the target cylinder, the target was aligned parallel to the z' axis

of the bridge and oriented normal to the z’ axis (Fig. 4-6). We were unable to
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Figure 4-7: Transducer and target configurations for data measurements: (a} for
beam pattern measurements, and (b) for rough cylinder backscatter measurements.

accurately measure the transducer aim after mounting them for the rough cylinder
measurements, so the beams were mechanical aimed at the target axis and each
transducer was angled slightly inward to insure the beams overlapped on the target.
Even though the transducer maximum response axes were not exactly normal to the
target axis, the relative transducer/target alignment was held constant throughout

the experiment.

4.3 Data acquisition and signal processing

The data was collected using bandlimited impulse response techniques measuring
the frequency response with a single pulse [35]. An impulse was applied to the
source transducer exciting it over its entire bandwidth. This transmitted into the
water a bandlimited acoustic pulse whose spectrum was shaped by the frequency re-

sponse of the source transducer. Fourier transforming the received time series yields
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(b) Rough evlinder backscatter measurements.

Fignre 1-X: Laboratory setup for experiments.
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the frequency response of the entire transducer-target-electronics system. Decon-
volvi~g from this the transducer-electronics impulse response measured during the
calibration procedire gives the target frequency response.

The driving impulse was generated by a Parametrics 5055PR pulser connected
directly to the source transducer. The pulser contained an internal power amplifier
so no additional signal conditioning was required on the transmitter side. The
received signals were amplified, filtered and captured with a digital oscilloscope
connected to an IBM PC (Fig. 4-9). In order to maximize the signal to noise
ratio, the received signal was first amplified through a Parametrics model 5660B
preamp providing +60 dB of gain. The signal was then high-pass filtered (Krohn-
Hite model 3202R with cutoff frequency 200 kHz) to remove all low frequency
noise. The final signal was captured and stored on a Analogic Data 6000 digital
oscilloscope equipped with a model 630 plug-in module. The oscilloscope sampled
the signal at 10 MHz (applying an internal 5 MHz anti-aliasing filter) using 12
bit A/D conversion. An HP 3314 function generator provided an 8 Hz square
wave trigger and timing signal for the entire system and all the equipment was
controlled from the computer through a standard GPIB interface. .The computer
also controlled the bridge motors through an HP 3488 switcher/controller.

The oscilloscope digitized and stored a 1024 point time series of the receiver
signal for each ping. At a sampling frequency of 10 MHz, this gave a time window
of 102.4 usec. This time window was delayed (based on the trigger pulse) so that the
initial specular reflection arrived near the beginning of the data window allowing
as much time as possible to measure later arrivals associated with the Rayleigh
modes of the target. The data acquisition sequence consisted of capturing 100
separate pings of the target (at a 8 Hz pulse repetition rate) with the oscilloscope.
These pings were averaged and the averaged time series was stored as a single
measurement. The bridges then moved the transducers and/or target into position

for the next measurement and the system went into a 5 second wait period to
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Figure 4-9: Schematic diagram of data acquisition system and motor controllers.

allow any mechanical oscillations in the support frame to decay. Then the entire
acquisition cycle repeated. When all the programmed measurements were complete,
the bridges returned to their original positions.

Normally when Fourier transforming finite-length time series, one applies a
shaped window to the time series to reduce leakage and spectral smearing caused by
the data window impulse response [47]. A finite-length time series has an inherent
rectangular or boxcar window by virtue of the fact that the data start at some point
and stop a finite time later. The leakage and frequency smearing in the spectrum are
due to the mainlobe width and sidelobe levels in the window’s Fourier transform.
The mainlobe width is in turn related to the length of the window and the side
lobe levels are related to the taper or shape of the window. Typical data windows
such as the Hanning or Bartlett window apply a high degree of amplitude taper
over much of the window length to decrease side lobe levels. However when dealing
with transient rather than steady-state signals, such a highly tapered window could

destroy the entire signal and pass just the noise. We wanted a window that had no
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taper (amplitude = 1) over the time gate when signal arrived but provido.;d some
tapering at the beginning and end of the window. We took an 80 point Hanning
window, split it in half, and inserted a 944 point flat (amplitude = 1) section in the
middle. This rectangular window with Hanning edges provides some degree of side
lobe suppression while giving a long zero taper region for data collection. Figure
4-10 shows the window and its sidelobe roll-off compared to a standard rectangular
window.

The recorded measurements were multiplied by this modified Hanning window
and the mean value was subtracted from each to remove any bias from the A/D
converters. The time series were then zero-padded and transformed using a 2048

point Fast Fourier Transform (FFT) for frequency domain analysis.

4.4 Calibration of system

As described in Section 4.2, a series of beam pattern measurements were taken
using the 2.25 MHz transducers. The source transducer was mounted to a stepper
motor and rotated through £40° in 2° steps while the receiver was held fixed 30 cm
away. Measurements were taken to ensure that no spurious reflections from the side
walls or the water surface were received during the data time window. For the beam
pattern measurements, the signal to noise ratio was very high and only 64 pings were
averaged rather than the 100 pings used for backscatter measurements as described
in Section 4.3. Figure 4-11 shows the time series measured over the full azimuth
range where all time measurements are referenced to the source trigger pulse. The
source transducer moved in a small arc since its center axis was not exactly aligned
with the drive shaft. This caused the 4 usec deviation in the arrival of the leading
edge of the pulse evident from about ® = —6° to 30°. The measured sound speed in
the water was 1466 m/sec so this 4 usec deviation means the transducer face moved

5.86 mm during the measurement or a relative error of 2%. The faint late arrivals
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Modified l-hmﬁn}'wimow used for data acquisition
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Figure 4-10: Modified Hanning window used in data acquisition: (a) close-up of
leading edge (and trailing edge) of 1024 point window for time series showing

smoothing due to the applied 40 point Hanning edge.(b) Fourier transform of mod-
ified Hanning window vs rectangular window.
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Beam pattern time series
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Figure 4-11: Waterfall plot of time series from beam pattern measurement.

seen trailing out to 215 usec are due to radiation from the back of the transducer.
Ambient noise measurements were also taken with the same equipment setup and
the source turned off.

Fourier transforming these data give the source frequency response as a func-
tion of both frequency and azimuth. Since we did not have a calibrated reference
hydrophone available, the maximum value in the data was set to 0 dB and used
as the normalization constant. In Fig. 4-12, we can see that the response extends
from about 3.5 MHz down to the high-pass filter roll-off at 250 kHz. The beam
pattern extends out to about ® = +20° with the maximum response at about 8°
off the beam axis. These data have not been normalized to a reference distance;
that will be accounted for in the later analysis. Using the measured ambient noise
time series, Fig. 4-13 shows the signal to noise ratio for these measurements was

well above 20 dB for almost all frequencies within +20° of azimuth.

The greyscale plots show the high degree of fluctuation in the source response

near its center axis. Figure 4-14 shows the frequency response above 1.25 MHz
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2.25 MHz Transducer Impulse Response
Normalized Source Strength, dB
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Figure 4-12: Greyscale plot of Fourier transformed beam pattern time series show-
ing frequency response vs. frequency and azimuth angle (®) for transducer from
—40° < & < 40° (® = 0° is “broadside”).
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2.25 MHz Transducer Impulse Response
SNR, dB
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Figure 4-13: Greyscale plot of signal to noise ratio (SNR) for beam pattern mea-
surements vs frequency and ¢.
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Source response near centes of beam
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Figure 4-14: Frequency response measurements for near center beam (% < +6°).

is highly variable even over two degrees and is not symmetric about & = 0°, We
believe the center beam null is due to internal reflections in the transducer element
which give rise to destructive interference right on the beam axis. The time series
show that this internal reflected arrival is confined to +4° in the center of the beam.
Since the target spans the entire transducer beam (as required to consider the target
as infinitely long), this irregular source pattern greatly complicates the calibration
process. For any given measurement of the infinitely long cylinder, the incident field
at each point on the surface is a complicated function of both frequency AND angle
as shown in Fig. 4-12. Averaging the source response over the main frequency band
(Fig. 4-15) shows a Gaussian model approximates the roll off in the “average” beam
pattern but does reflect the bimodal structure in the center beam. This question
of system calibration was partially answered by using backscatter data from the

smooth cylinder as a reference standard.
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Source response averaged over bandwidth from 1IMHz to 3 MHz

—

Nonmalized average response

-40 30 -20 -10 0 10 20 30 40
Azimuth angle (degrees)

Figure 4-15: Transducer frequency response averaged over frequency to give “av-
erage” beam pattern vs ®. The response was averaged over the bandwidth from 1
MHz to 3 MHz. A fitted Gaussian (- - -) with characteristic beamwidth 6, = 26°

is superimposed for comparison.
4.5 Experimental data and data selection

As noted earlier, the scattering data was collected with a transducer to target range
of 24 cm, and the measured sound speed in the tank was 1477 m/sec for the duration
of the scattering experiments. This gives a first Fresnel zone size of 5.4 cm at 250
kHz down to 1.4 cm at 3.5 MHz. Using the 26° beamwidth estimated in Fig. 4-
15, the beam is 11.1 cm wide at the target. Thus, the criteria for considering the -
cylinder as effectively infinite discussed in Section 2.2 are met: the target (40 cm
smooth cylinder and 75 cm rough cylinder) is long enough to completely span the
beamwidth and the beamwidth is wide enough to span several Fresnel zones.
Three separate data runs were made measuring backscattering from the rough
cylinder target. A different target configuration was used for each run to maximize
the number of independent realizations (Fig. 4-16). Although there is some overlap

of target segments between data runs, we feel these still provide independent real-
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Figure 4-16: Configuration of rough cylinder subsections for data runs 1 through 3.

izations since the target correlation length is so small (Fig. 4-5). Since the rough
cylinder target had to be removed from the mounts to rearrange the subsections,
alignment and calibration measurements were made prior to each rough surface data
run to ensure the orientation and alignment had not changed. The 40 ¢cm smooth
cylinder was mounted and used as a standard for these alignment measurements.
Each of the alignment checks consisted of making a backscatter measurement (av-
erage of 100 pings) at 4 positions along the axis of the smooth cylinder target.
The first measurement position was directly over the joint between the subsections
and the remaining measurements were taken at 3 cm intervals down the 2z axis of
the target. By comparing the arrival times between the first and last position, we
ensured that the target axis z remained parallel to the axis of bridge motion 2.
In addition, comparing the arrival times between separate alignment runs, we were
able to verify that the overall alignment was unchanged even though the target was
removed and remounted in a different configuration.

Figure 4-17 shows a waterfall plot of the time series from all four of the the
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Smooth cylinder backscarter
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Figure 4-17: Time series for smooth cylinder alignment and calibration measure-
ments taken throughout the experimental run. Position 1 was directly over the joint
between the two 20 cm smooth cylinder subsections. The transducers were moved
2 cm along the z' axis toward the end of the target between positions.

smooth cylinder alignment checks. Each measurement is labeled where the first
number represents the calibration run number and the second is the transducer
position within that run. This figure illustrates the fact that the precise alignments
were maintained; the initial arrival deviates less than 0.8 usec over the whole ex-
periment. Figure 4-17 also shows the separate arrivals of the different scattering
modes discussed in Section 2.1.3. The first Rayleigh surface elastic wave is clearly
evident and labeled on the figure. Higher order Rayleigh waves corresponding mul-
tiple circumnavigations of the cylinder and possibly Whispering Gallery waves can
be seen at t = 344, 370, and 357 usec.

Using the phase shifts derived in Section 2.1.3 (Egs. 2.52, 2.55, and 2.56), we can

calculate the expected delay of the Rayleigh wave arrival relative to the specular
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reflection arrival. The phase shift for the specular component was
Nspecular = —2ka (4.3)
and for the mth Rayleigh wave
nr = ka|(c/cr)(27 — 20g) — 2 cos Og] + 2rmkac/cp. (4.4)
The phase difference between these two waves is
An = 2ka {(cosOr — 1) — (¢/cr)(x(m + 1) — Or)} . (4.5)
This corresponds to a time delay
At = (2a/c) {(cosOr — 1) — (¢/cr)(m(m + 1) — Or)}. (4.6)

Neubauer [35] gives cg = 2827 m/sec for stainless steel. This gives a Rayleigh
“launch” angle of 8 = 31.5°. Calculating the expected delay for the first three

Rayleigh waves, we find

Atypo = 9.28 usec
Atp=; = 19.42 usec

and these agree with the relative arrivals seen in Fig. 4-17.

Tank echo measurements were taken to ensure that no reflections from the water
surface, tank walls, or support structures arrived within the data time window.
Figure 4-18 shows the time series recorded at the 4 transducer positions used for
the alignment measurements. The same setup and programmed motions were used
only the target cylinder was removed from the mounts. There is some reflection off
of the target mounts in position 4 and this corresponds to the transducers positioned
very close to the end bracket but the signal is more than two orders of magnitude

less than the target signal.
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Tank echos at smooth cylinder measurement positions
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Figure 4-18: Tank echo measurements using exactly the same alignment and trans-
ducer motions as Figure 4-17 except with the target removed from the mounts. This
shows some return off of the mounts at the extremum position 4. The returns are
roughly 40 dB below that from the cylinder.
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Rough cyhnder backscancr Run 1
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Figure 4-19: Time serie< for rough cylinder measurements in run 1. The transducer
mount was moved 2 cm along the z' axis between measurements and the target
configuration is shown in Figure 4-16. A typical smooth cylinder time series is
shown to compare the Rayleigh wave arrival times.

Rough cylinder measurements were made at 18 positions spaced 2 cm apart
down the target axis. Figure 4-16 shows the target configuration for each of the
three data runs and the approximate starting and ending positions of transducers.
Tank echo measurements made at each of the 18 positions showed no reflections
from the tank or mounting frame were received during the data window even at the
extreme positions 1 and 18. Figures 4-19 — 4-21 show waterfall plots of the rough
cylinder backscatter time series. An typical smooth cylinder time series is included
indicating the expected arrival time of the first Rayleigh surface elastic wave.

Again ambient noise measurements were taken through out the experiment by
turning off the source and measuring the noise field. Averaging these, an average
noise level was found and SNR levels were computed for each measurement. Sample
SNR levels are shown in Fig. 4-22 for the smooth cylinder and rough cylinder

measurements. The SNR remains well above +20 dB from t .e filter roll-off at 250
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Rough cylinder backscatter - Run 2
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Figure 4-20: Time series for rovgh cylinder measurements in run 2. A typical
smooth cylinder time series is shown to compare the Rayleigh wave arrival times.

Rough cylinder backscatter - Run 3
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Figure 4-21: Time series for rough cylinder measurements in run 3. A smooth
cylinder time series is shown to compare the Rayleigh wave arrival times.
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kHz to 3.4 MHz except for some low SNR regions between 600 kHz and 1.5 MHz.

Fourier transforming the time series gives the frequency response in the backscat-
tered field. However the issue of calibrating this response to normalize for the fre-
quency response of the transducers themselves has not been resolved. The analysis
in Section 4.4 showed the response curves for the transducers were highly variable
over frequency and angle; efforts to use this data to find some sort of spatially
averaged “average effective” incident field were not successful. Another normaliza-
tion technique that has been used is to calibrate the system based on the measured
response from a known “standard” target, typically solid tungsten carbide spheres
[35]. The measured response from the standard is compared with an analytic so-
lution to give a normalization or calibration curve for the system and transducers.
Similarly, the response from a smooth elastic cylinder is well known so measure-
ments from the smooth cylinder alignment checks were used to find a calibration
curve reflecting an “ average effective” incident field over the insonified length of
the target.

As shown in Eq. (2.80), the scattered field can be represented as a non-dimensional

R PuwR _
PeNaER (4.7)

where R is the distance from the target to the source/receiver and P, is some

form function f*

reference calibration response measured at a distance R,. Equation (4.7) assumes a
point source with a spherically spreading incident field and a cylindrically spreading
reflected field. For short pulse transient measurements the reflected field is given by
gr which is the Fourier transform of the reflected pulse and the incident field is g,,
the transform of the incident pulse at a reference distance R,. The form function

is then given by
2R g,|R
a5 |90l R’

Since the analytic solution for a smooth elastic cylinder, fZ, , is well known, g, can

1721 = (4.8)

be found from the calibration measurement g.,; of the backscatter from the smooth
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Figure 4-22: Sample SNR levels for (a) smooth cylinder and (b) rough cylinder
measurements,
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cylinder

- e . 4.9
| =\ e V=R (49)

In this case R, = R = 24 cm so Eq. (4.8) becomes
17 = _ ol (4.10)

|9eal /Il

Using the material properties for stainless steel given in Table 4.2 |f%| was
calculated and compared to the measured response from the smooth cylinder data
|gcat|- Selecting smooth cylinder measurement 3-2 made away from the joint and
the ends, a calibration response curve |g.u|/|f%] was calculated (Fig. 4-23a). This
figure shows a broad “noisy” response curve where the fine structure or “noise” is
due to slight mismatches in the nulls between g., and f53. Low pass filtering this
curve (Fig. 4-23b) smoothes the data, removes all the fine structure, and reveals a
slowly varying calibration curve corresponding to some “spatially averaged” incident
field. Comparison of the calibration curve to actual beam pattern measurements
in Fig. 4-14 are shown on Fig. 4-24. Here the beam pattern measurements have
been multiplied by a gain factor to account for the fact that the measurements were

made at different ranges using different source levels. However, the gain factor

G= A"“""’"‘“"‘w/ 0 =1.755 (4.11)
Ataryrtarg 2rtarg

was determined directly from the equipment set-up data not by empirically fitting

the amplitudes of the two curves.

The close match in both structure and amplitude between the curves in Fig.
4-24 indicate that the calibration curve (Fig. 4-23b) is a valid representation of
the incident field at least up to 1.5 MHz. The mismatch above 1.5 MHz is again
due to the highly variable nature of the beam pattern. We were unable to find an
acceptable method for calibrating the data above 1.5 MHz to any absolute scale.
The relative variations in the scattered fields will be shown for the entire frequency
bandwidth however comparisons to analytic solutions will only be valid over the

extent of the validity of the calibration curve (up to 1.5 MHz or ka = 30).
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Figure 4-23: Calibration curves obtained by inverting the smooth cylinder “stan-
dard” frequency response from Figure 4-17 (measurement 3-2) and the numerical
solution for elastic cylinder scattering . (a) Raw curve showing fine structure due
to mismatch between nulls. (b) Curve after low-pass filtering using a fourth order
Butterworth filter to smooth the data.
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Figure 4-24: Comparison of inverted calibration curve (—) and measured response
from beam pattern measurements at different azimuth angles(- - -).
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Smooth cylinder response
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Figure 4-25: Normalized smooth cylinder frequency response measurements. Note
missing nulls at ka= 5.0, 8.0, and 10.0 in positions 3-1, 4-1, 5-1, and 6-1 corre-
sponding to measurements taken at a joint between subsections.

Using the smoothed calibration curve, we can now normalize all the smooth
cylinder data and analyze the target frequency response. Any fine structure in
the frequency response will be due to resonant modes in the target response since
all this information has been “filtered” out of the calibration curve. Comparing
the measured frequency response from all the smooth cylinder alignment measure-
ments (Fig. 4-25) reveals the deep nulls at ka = 5.0, 8.0, and 10.0 are missing in the
measurements 3-1, 4-1, 5-1, and 6-1. This occurred at the same transducer posi-
tion, directly above the joint between subsections, during each run. Evidently the
presense of the internal discontinuities in the joint destroys the modal interference
which gives rise to these nulls. Measurements taken at position 2, just 3 cm away,
show no effects, further indicating that this loss of the modal pattern is localized
to scattering off of the joint itself.

Examination of the normalized response from the rough cylinder data (Fig. 4-
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Smooth Rough
“ l Cylinder Cylinder "
Aka 0.01 0.1
a, 0.456311 cm | 0.456311 cm “
R 24 cm 24 cm ||
c 1477 m/s 1477 m/s ||
c, 3100 m/s 3100 m/s
c 5790 m/s 5790 m/st
P 7.9 g/cc 7.9 g/cc ||
o, 26° 26° ||
# Realizations 1 50

Table 4.2: Parameters used for numerical simulations (material properties for Ref-
erence [45)).

26) reveals similar examples of loss of the nulls. These nulls are strong features
that are independent of the roughness effects seen at higher ka values. The exact
position of the transducers relative to the joints in the rough target is not known
for the rough cylinder but the loss of the nulls indicates that the transducers were
insonifing a joint at these positions. The fact that this modal null loss occurs at
similar positions during all three runs and that it repeats over 7 positions (2cm
spacing) or a 14 cm spatial periodicity matches the 15 cm length of the subsections.
Based on this, rough cylinder realizations 1-4, 1-5, 1-12, 2-5, 2-12, 2-13, 34, 3-5,
3-12, and 3-13 were removed from the analysis due to interaction with a subsection
joint. Similarly, smooth cylinder measurements 3-1, 4-1, 5-1, and 6-1 were also

removed from the data set.

4.6 Comparison with numerical results

Using the 12 remaining backscatter measurements from the smooth cylinder, a
comparison can be made with predictions from the numerical models in Chapter
3. Solutions for the scattered field were calculated using the measured laboratory

parameters and published elastic properties of stainless steel (Table 4.2). Figure 4-
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Figure 4-26: Normalized rough cylinder frequency response measurements for runs

1, 2, and 3.
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27 compares the 12 smooth cylinder backscatter measurements to the model solution
for a smooth elastic cylinder. The data has been normalized using the calibration
curve in Fig. 4-23(b) to show the scattered form function |f*|. The normalized
data is only valid up to ka = 30 which corresponds to the 1.5 MHz upper frequency
calibration limit discussed in Section 4.5. There is very good correlation between the
predicted and measured field in both structure and levels over most of this frequency
range. Figure 4-28 shows the ensemble average of the backscatter field over the 12
measurements Figures 4-29 and 4-30 show the variance of the smooth cylinder data

and the correlation of the variance to the SNR during the measurements.

Figure 4-31 compares the scatter of the 44 rough cylinder backscatter mea-
surements with the upper and lower bounds from a Monte Carlo simulation. The
numerical model was run using the actual design surface profile of the target and
the parameters listed in Table 4.2. Fifty realizations were calculated simulating
moving the origin (and hence the source and receiver points) 2 ce down the z axis
between realizations. Figure 4-32 shows the relative variance, oy« /(|f*|?) of the
backscatter data verses the values from the numerical model. As in the smooth
cylinder data, there is a correlation between the relative variance and the SNR dur-
ing the measurements (Fig. 4-33). Smoothing the relative variance curves using a
21 point running average weighted by the SNR value at each frequency point (Fig.
4-34) reveals the trend in the data as ke and ko, increase (the numerical data was
also smoothed using the same relative weighting)

Even with the small sample size of 44, the distribution of |f*°| at most frequencies
is well described by the Ricean PDF as predicted (Fig. 4-35). Here the shape
parameter 4 has been calculated from the measured distribution of |f*°| using Eq.
(3.7) for low relative fluctuations and the least squares method described in Section
3.3 for high relative fluctuations. However, at frequencies near nulls (Fig. 4-36), the
echo PDFs have a bimodal structure and skew; the Ricean PDF no longer describes

the distribution in the data. Calculating v from the measured data and simulated
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Figure 4-27: Measured backscattered (-) field from a smooth “infinite”-length stain-
less steel cylinder vs predicted field (—) from numerical simulation. Scatter plot
formed from measurements taken at 12 different positions along the cylinder’s 2
axis.
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Figure 4-28: Mean of measured backscattered field from smooth “infinite”-length
cylinder (*) vs predicted field (—). Mean measured field is an ensemble average of
the 12 measurements in Figure 4-27. Errorbars indicate + 1 standard deviation,

O|s=|, from the 12 measurements at each frequency.
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Figure 4-29: (a) Variance of,..| and (b) relative variance Ofpee)/{If®])? of smooth
cylinder backscatter data over the 12 realizations.
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Figure 4-30: Sample SNR level (—) for smooth cylinder measurements overlaid
with the relative variance (-) from Figure 4-29(b).

realizations (Fig. 4-37) for all ka shows the excellent correlation between the data
and the model predictions.

Finally, comparing the mean field of the rough cylinder data to the smooth
cylinder data and their numerical models (Fig. 4-38) seems to show the decrease in
the rough cylinder mean field level as predicted by the theory and the numerical
simulations in Chapter 3. Only the frequency band corresponding to the best

agreement between the smooth cylinder data and the analytic solution is shown.




if

If

ifl

Figure 4-31: Measured backscattered field (-) from a randomly rough “infi-
nite”-length stainless steel cylinder vs predicted minimum and maximum from
Monte Carlo simulations with additive noise (—) and without additive noise (-
- -). Scatter plot formed from measurements of 44 realizations along the target axis
and the numerical simulation is based on 50 simulated realizations using the profile
of the target. Additive Gaussian white noise has been included in the Monte Carlo
simulations to model the system related noise observed in the smooth cylinder data.
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Figure 4-32: Relative variance o7,/ (|f|?) of rough cylinder backscatter data over
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noise (—).
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Figure 4-33: Sample SNR level (—) for rough cylinder measurements overlaid with
the relative variance from Figure 4-32 (---).
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Figure 4-34: Relative variance oy /(|f*[)* of rough cylinder backscatter data (*)
vs the numerical prediction (—) after smoothing using a 21 point weighted running
average. Simulation includes additive Gaussian white noise.
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Figure 4-35: Histogram of measured rough cylinder backscatter data for various ka
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— (f) respectively.
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Figure 4-36: Histogram of measured rough cylinder backscatter data for various ke
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Figure 4-38: Mean of measured backscattered field from a randomly rough “in-
finite-length cylinder (*) vs predicted mean field () overlaid with measured
smooth cylinder mean field (o) and smooth cylinder solution (---) from Fig. 4-28.
The rough cylinder measured mean field (*) is an ensemble average of the 44 mea-
surements in Fig. 4-31.

103




Chapter 5

Discussion: of Results

The backscatter measurements taken with the smooth cylinder target provide a
baseline for comparison between the two data sets. Since both the smooth and rough
targets were constructed from the same material and measurement procedures were
identical, differences in the data sets are related to the surface roughness.

Figures 4-27 and 4-28 show that the smooth cylinder data follows the general
trend and level of the predicted solution, but in many places, there is a mismatch
in the modal structure between the two curves. We believe that this is due to
imprecisions in the specification of the elastic properties of the target. No attempt
was made to measure the actual wave velocities in the target and published values
were used for the numerical solutions. Kaye and Laby [49] note that factors such
as texture, cold work, stress, hardening, tempering, and aging can cause significant
changes in the sound velocities in metals. As illustrated in Table 5.1, there are large

variations in the published properties for stainless steel. The parameters published

[ Source ¢, m/s p g/cm® |

[ AIP Handbook [45] | 3100 5790 7.9
[ Neubauer [35 3106 | 5594 79 |
Kaye and Laby [49] | 3297 | 5980 7.8

Table 5.1: Material properties for stainless steel from various sources
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in the AIP tables were used because they provided the closest match with the
observed modal structure in the data. Different values significantly affected the
modal structure and the relative position of the peaks and nulls in the numerical
solution. In Fig. 4-28, the smooth cylinder data most closely match the modal
structure of the numerical solution for 14 < ka < 22 so this is the region where we
can expect the best conditions for objective comparison of the rough cylinder data
with the theoretical predictions.

The smooth cylinder data also contain some small fluctuations between real-
izations (Figs. 4-27 and 4-29). These deviations between individual measurements
reflect the accumulation of systematic errors inherent in any experiment; align-
ment errors, measurement errors, calibration errors (as already discussed), signal to
noise ratio, bubbles and suspended particles, nonuniformities in the cylinder, sur-
face microroughness, and anisotropies in the material properties all contribute to
the variance, oﬁ-m', in the data between smooth cylinder measu~ements. Since the
calibration of the data for ka > 30 could not be established, we analyzed the rela-
tive variance (variance divided by the mean square); this self-normalizes the data
for all ka. Figure 4-29 shows the variance and the relative variance for the smooth
cylinder data has a general “floor” which gradually increases with ka (as acoustic
wavelength decreases). There is a large localized peak in the variance at ka = 46
and smaller spikes throughout the data. Comparing the normalized variance with a
scaled sample SNR curve for the experiment (Fig. 4-30) shows that the large peak
at ka = 46 correlates with a dip in the SNR and that the smaller spike at ka = 12
also correlates with a sharp dip in the SNR. The variance shows a sharp rise above
ka = 65 as the SNR falls off at the upper limit of the transducer response.

The rough cylinder time series (Figs. 4-19 — 4-21) illustrate the complicated
nature of the rough surface scattering. There are now multiple “specular” arrivals
from different facets of the surface in the main beam causing a temporal spread in

the “specular” arrival time. Likewise, each realization contains an ensemble of ap-
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proximately independent radii from each differential element along the cylinder axis
causing a temporal spread in the Rayleigh wave arrival times and large fluctuations
in its relative amplitude.

The scatter in the normalized rough cylinder response (Fig. 4-31) is well de-
scribed by the numerical simulations. Comparisons using several different random
profiles showed the closest correlation with the data when the actual target profile
was used in the simulation and the number of simulated realizations was the same
order as the data set. The data shows the same variance “floor” at low ka as seen in
the smooth cylinder data, but above ka = 10, there is a clear increase in the scatter
in the measurements due to the rough surface profile which is well predicted by the
upper and lower bounds of the numerical model. There are also localized increases
in the data fluctuations around ka = 12 and ka = 23 which are not described
by the numerical bounds. The relative variance of the data (Fig. 4-32) shows an
overall increase in variance due to the rough surface effects. The data follow the
general trend of the numerical prediction and clearly exhibit a transition point and
plateau at kg, = 0.5. The large spikes in the data variance at low ka are due to the
very low signal levels in the resonant nulls. Comparing the relative variance to the
SNR levels for the rough cylinder experiment (Fig. 4-33), shows the “noise” peaks
at ka = 12 and 22 correlate with large drops in the signal to noise ratio at those
frequencies. This explains the increased scatter in the data noted in Fig 4-31 at
those frequencies. Smoothing the relative variance plot using a weighted running
average based on SNR (Fig. 4-34), highlights the good agreement between the data
trend and the numerical prediction. Again we see that as ko, increases and the
surface roughness has a greater effect in the scattering process, the variance in the
backscatter increases and reaches a saturation level at ko, = 0.5.

Theoretically, the variance goes to zero as ko, goes to zero and Rice PDF shape
parameter 7 becomes infinite. However, as we have already seen from the smooth

cylinder data, the experimental data have a finite noise “foor” even at low ka. This
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system related noise “floor” is modeled as zero mean additive Gaussian white noise
and included in the numerical simulations. Figure 4-37 illustrates the improved fit
between the data and the simulations when this additive noise is included. The
standard deviation of the additive noise was matched to the observed standard
deviation in the smooth cylinder data. Now we can identify three distinct regions

in the data:

1. A low roughness region (ko, < 0.20) dominated by system noise where v

follows the predicted structure but the level rolls off.
2. A transition from low to high roughness (0.20 < ko, < 0.50) where v oc k4.
3. A high roughness region (ko, > 0.5) where ~ levels off near 0.

The sharp spikes in Fig. 4-37 are correlated with the modal nulls in the target
response. These local maxima in fluctuation (local minima in <) arise when the
value of ka matches or nearly matches a modal null region. Small changes in the
local ka will move the response in or out of the null region and cause large changes
in scattered amplitude. This increases the variance over the ensemble of realizations
and causes the pattern of peaks in Fig. 4-32 and dips in Fig. 4-37. This phenomenon
is evident in both the numerical model and the data.

Comparing the mean value of the rough cylinder data with the mean value of

the smooth cylinder data and comparing both with the numerical predictions (Fig.
4-38), shows a roughness-induced decrease in the mean field as predicted by the
numerical simulations. The data and models show excellent agreement at least up
to ka = 20 and while the correlation breaks down (due to the unresolved calibration
issue) above ka = 20 the data show the same relative trend and the same relative
decrease as the theoretical model.

Summarizing the major points:

o The specular and Rayleigh wave arrival times are “smeared” out due to the
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perturbed acoustic path lengths caused by the random radius perturbations

(Figs. 4-19 — 4-21).

Even for a small sample size (44 realizations), the Rice PDF characterizes the
echo distributions for most values of ka away from sharp nulls (Fig. 4-35 and

4-36).

The bounds of scatter in the backscatter data are reasonably well described by
the maximum and minimum of the numerical model for an equivalent number

of realizations using the actual target profile (Fig. 4-31).

The variance of the data is bounded by a noise “floor” and correlated with
the system-related variations for all measurements (Figs. 4-29, 4-30, 4-32, and

4-34).

Once the additive white noise is included in the numerical simulations to
account for system effects, there is a greatly improved correlation with the

observed change in v as ko, increases (Fig. 4-37).

The predicted turning point between low and high roughness regions is ob-

served at ko, = 0.5 (Figs. 4-32, 4-34, and 4-37).

The mean backscattered field from the rough cylind=r follows both the struc-
ture and level of the theory (at least to the extent that the calibration and
material properties are sufficiently known) and shows the predicted decrease

in the mean level (Fig. 4-38).
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Chapter 6
Conclusions

The data presented show the effects of small scale surface roughness on the scat-
tering from a body of curvature. By randomizing the radius and including realistic
source terms in the deformed cylinder formulation, we have been able to accurately
model the observed scattering phenomena from a randomly rough elastic cylinder.
We have shown the importance of careful description of the target profile and of
precise alignment in order to quantitatively predict and measure roughness-related
effects in the scattered field. The summary of major results listed in Chapter 5
details many of the aspects of rough body scattering that have been predicted but
not previously observed due to the lack of controlled data sets.

This data set represents one set of surface statistics for one value of surface
roughness. More work is required over a broad range of surface roughness scales to
verify the results obtained here and investigate such features as the decrease in the
mean scattered field as o,/a increases. Perfectly smooth objects do not exist even
in the laboratory, and much more work is required on this general problem if we
wish to truly understand the scattering process.

While there are similarities to rough planar interface scattering which has been
heavily studied, we have seen the circumferential waves arising from the curvature

of volumetric bodies provide a source of new and unexamined phenomena. The
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deformed cylinder formulation has been a powerful tool in predicting the roughness-
related effects in both the mean and the fluctuations of the scattered field, but it
is limited to elongated shapes. More general formulations are needed to describe
rough spheres and other shapes as well as to consider truly two-dimensional surface
roughness.

Whereas we have focused on the “forward” problem of predicting then measur-
ing scattering from a known rough surface, future work could investigate the inverse
problem of extracting information from the scattered field in order to infer the pro-
file of an unknown target surface. Just as early work on rough interface scattering
proved essential to the design and development of a wide variety of currently em-
ployed sonar systems and techniques, research into general rough body scattering

will provide the necessary foundation for improvements in the “state of the art”.
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